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The standard experimental paradigm in the social, behavioral, and economic
sciences is extremely limited. Although recent advances in digital technologies and
crowdsourcing services allow individual experiments to be deployed and run faster
than in traditional physical labs, a majority of experiments still focus on one-off
results that do not generalize easily to real-world contexts or even to other
variations of the same experiment. As a result, there exist few universally
acknowledged findings, and even those are occasionally overturned by new data.
We argue that to achieve replicable, generalizable, scalable and ultimately useful
social and behavioral science, a fundamental rethinking of the model of virtual-
laboratory style experiments is required. Not only is it possible to design and run
experiments that are radically different in scale and scope than was possible in an
era of physical labs; this ability allows us to ask fundamentally different types of
questions than have been asked historically of lab studies. We posit, however, that
taking full advantage of this new and exciting potential will require four major
changes to the infrastructure, methodology, and culture of experimental science:
(1) significant investments in software design and participant recruitment, (2)
innovations in experimental design and analysis of experimental data, (3) adoption
of new models of collaboration, and (4) a new understanding of the nature and
role of theory in experimental social and behavioral science. We conclude that the
path we outline, although ambitious, is well within the power of current technology
and has the potential to facilitate a new class of scientific advances in social,
behavioral and economic studies.
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Over the past half century or so, lab experiments have yielded fundamental
insights into decision making (Tversky and Kahneman 1974), social influence (Asch
1951; Milgram 1969), cooperation (Yamagishi 1986), cultural evolution (Kirby,
Cornish, and Smith 2008), market dynamics (Plott 1982) and numerous other
success stories. More recently, other experimental methods such as field
experiments have also become popular in social science (Duflo, Glennerster, and
Kremer 2007) and in business (Manzi 2012), where they are often referred to as “A/B
tests” (Kohavi, Longbotham, and Walker 2010). Although both types of experiments
leverage randomized assignments, lab experiments afford greater control and are
therefore often preferred for theory testing and development. However, they also
exhibit at least three serious deficiencies with respect to the generalizability of
their findings, consistent challenges to both their external and ecological validity.

First, the necessity of recruiting participants who can physically show up at the
investigator’s lab has historically limited participation in lab experiments to
university students — typically undergraduates — and occasionally members of the
local community. Experimental findings are therefore heavily biased toward
WEIRD (Western, Educated, Industrialized, Rich, and Democratic) societies (Henrich,
Heine, and Norenzayan 2010) and are rarely representative of even those
populations. Though the findings are often assumed to generalize to other
populations, this is not always — and perhaps not even often — the case (Henrich
et al. 2001, 2005; Nisbett 2004). The cost and logistical complexity of running typical
lab experiments hamper efforts to systematically identify conditions under which
results from homogenous and/or non-representative groups can be expected to
generalize.

Second, while lab experiments are more flexible than A/B testing, they are still
severely constrained. Figure 1 shows the design space of SBE experiments
collapsed onto three conceptual dimensions: size (of the population to be studied);
duration (over which the experiment runs); and complexity (of the interactions
involved). Many problems of interest to the human sciences--for example life-
course outcomes, political polarization, democratic decision making, and economic
growth and security —involve large, diverse populations of people interacting in
complex ways over long periods of time: weeks, months, or even years. Traditional
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lab experiments, in contrast, are limited to small groups of people, often single
individuals, interacting in simplistic ways (responding to a survey, contributing to a
public good from some allocated endowment, issuing a judgment on some
specified outcome) over time intervals measured in minutes. In light of these
limitations, it should come as no surprise that the leap from the actual results of a
lab experiment to its real-world implications is necessarily tenuous and
speculative (Yarkoni 2019).

Third, the cost and administrative effort required to run a single experiment in a
lab places heavy constraints on the number of such experiments that any single
researcher or lab can conduct. As a result, individual experiments necessarily make
specific choices with respect to parameters that are not the analytical focus of the
experiment. For example, a prisoner’s dilemma experiment on the effect of reward
or punishment will typically focus on a single choice of parameters for the payoff
matrix or the game length (Embrey, Fréchette, and Yuksel 2018), while an
experiment on decision making under uncertainty will focus on specific parameters
of a gamble (Tversky and Kahneman 1974). Over time, different experiments on the
same general question will make different choices with regard to these non-focal
parameters, implicitly assuming that they have no effect on the results. Almost
certainly, however, these degrees of freedom in experiment design do affect the
results, thereby contributing to inconsistencies and contradictions across
ostensibly comparable studies (Watts 2017; A. M. Almaatouq 2019; Landy et al. 2020).
While meta-analyses can resolve some of this disagreement, the absence of
systematic data on the differences caused by all such variations in experimental
conditions prevents even the most comprehensive meta-analysis from
reconstructing the full set of dependencies. Even for relatively simple settings in
relatively mature areas of study — say, individual judgment and decision making or
two-player games — the state of scientific knowledge is surprisingly fragile with
respect to contextual variation (Goroff et al. 2018).

While researchers in SBE sciences have started to take advantage of virtual lab
experimentation, often these efforts translate existing research designs from the
physical lab to a virtual environment. This approach significantly under-utilizes the
potential of virtual labs, which offer an opportunity to recruit orders of magnitude
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more participants and to execute experiments that could never be done in a
physical laboratory. Our vision to unlock this potential would require the
construction of core infrastructure and architecture and encouraging the research
community to take on higher throughput research designs through workshops and
collaborative efforts. We believe these approaches could respond to the underlying
questions about the challenges and roadblocks to scaling up experimental SBE
sciences. Further, these new kinds of experiments will offer higher levels of
external and ecological validity than experimental approaches in popular use in
these fields today.

We believe that these deficiencies can be addressed by supporting the
development of a new generation of virtual research labs, operating at a larger
scale and with more ambitious approaches to experimentation and collaboration
than current efforts. We identify two distinct benefits of resolving these challenges:
high throughput virtual labs enable large-scale systematic exploration of
experimental spaces — impossible with in-person labs, and with more precision
than online field experiments — and high throughput virtual labs enable new kinds
of SBE experiments such as new units of analysis and adaptive treatment
selection.

5
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Shortly after the World Wide Web had been invented, researchers began to employ
“virtual lab” experiments, in which the traditional model of an experiment
conducted in a physical lab is translated into an online environment (Horton, Rand,
and Zeckhauser 2011; Musch and Reips 2000; Mason and Suri 2012; Reips 2012;
Paolacci, Chandler, and Ipeirotis 2010). Virtual labs are appealing on the grounds
that, in principle, they resolve many of the constraints on participant recruitment,
research design, and practical administration that arise from the necessity of
physically co-locating human participants and the experimenter.

With respect to participant recruitment, crowdsourcing services such as Amazon
Mechanical Turk and Prolific now allow researchers to recruit and pay larger and
more diverse samples of participants than are available on college campuses or
local communities (Mason and Suri 2012). In addition, the speed and cost
advantages of crowdsourcing services have allowed researchers to run, in effect,
thousands of experiments that systematically cover the parameter space of a given
design. For example, this approach was taken in the Choice Prediction
Competitions, where human decision-making was studied by automatically
generating over 100 pairs of gambles following a predefined algorithm (Erev et al.
2017; Plonsky et al. 2019). Recent work took advantage of the larger sample sizes
that can be obtained through virtual labs to scale up this approach, collecting
human decisions for over 10,000 pairs of gambles (Bourgin et al. 2019). In other
cases, online experiments have attracted large and diverse populations of
participants who participate voluntarily out of intrinsic interest. For example, one
experiment collected almost forty million decisions from over a million unique
participants in over 200 countries (Awad et al. 2018).

With respect to research design, when combined with larger sample sizes, lower
costs, and faster turnaround times, the flexibility around time and space afforded
by remote participation has enabled researchers to design experiments that would
be difficult to run in a physical lab, or even impossible. For example, researchers
have succeeded in designing “macro-sociological” experiments in which the unit of
analysis is a collective entity such as a market (Salganik, Dodds, and Watts 2006),
an organization (Valentine et al. 2017) or a community (Whiting et al. 2017)
comprising dozens or even hundreds of individuals. By re-recruiting the same
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participants to return to the “lab” on many separate occasions (i.e. constructing a
panel data set), researchers have also examined how behavior evolves on longer
timescales while retaining high-resolution measurements (Mao et al. 2017). Finally,
it is possible to recreate complex, immersive, and realistic activities in tightly
controlled experimental environments not possible in physical labs (Mao et al.
2016; Whiting et al. 2020). This is, of course, not to say that distinct advantages of in
person labs, which are particularly important where control over subjects is
important; or where psychological processes invoked by physical proximity are
central; or where certain types of physiological interventions of measurements
might be necessary.

The capacity for virtual environments to facilitate experiments that are larger, more
complex, and more realistic than would be feasible to run in physical labs, and to
run these experiments faster and more cheaply, should allow researchers to
dramatically expand the accessible design space for experiments, with
correspondingly dramatic improvements in the replicability, robustness, and
usefulness of social and behavioral experimental science (see Figure 1). In the
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Figure 1. Schematic of the design space of lab experiments.
Reproduced with permission (A. Almaatouq, Becker, et al. 2020)



remainder of this section, we outline examples of some of the designs that are
made possible by the increased sample sizes and experimental control afforded by
running experiments online. For conceptual clarity, we have organized these
examples in ascending units of analysis, beginning with individuals, then groups,
then networks, and finally whole “societies.”

Individuals
In disciplines that focus on understanding individual behavior and the associated
heterogeneity, such as cognitive psychology or behavioral economics, high-
throughput virtual lab experiments can resolve scientific questions that cannot be
answered by small-scale laboratory experiments designed to discriminate between
specific theories. In particular, high-throughput online experiments can explore a
wider range of conditions, manipulate more factors simultaneously, estimate the
form of relationships with higher resolution, and support the use of more
naturalistic stimuli. We will consider each of these properties in turn.

Typical behavioral experiments run with a small number of conditions or a
constrained set of stimuli. For example, a researcher studying human decision-
making might carefully select pairs of gambles that discriminate between existing
theories and focus data collection on those gambles (e.g., (Kahneman and Tversky
1979)). Selectivity is sensible when only small numbers of participants are available
— those limited resources have the most impact when applied to what we believe
are the most informative cases. However, when many more participants are
available, there is an opportunity to run many more conditions, and it is no longer
necessary to focus on those that we believe a priori to be the most informative.
Indeed, the best way to make discoveries that go against our default expectations
is to explore the space of possible experiments in a way that is independent of our
existing theories. Procedural generation of conditions and stimuli provides a way
to do this. The researchers can define a set of dimensions along which the stimuli
can vary, and then a random process can be used to generate the set of stimuli to
be used in the experiment. For example, this approach was taken in the Choice
Prediction Competitions run by Erev and colleagues (Erev et al. 2017; Plonsky et al.
2019), where human decision-making was studied by automatically generating over
100 random pairs of gambles following a predefined algorithm. Since each gamble
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can be described by a small number of dimensions that determine the
probabilities and payoffs involved, this amounts to randomly sampling in the
space of stimuli. Bourgin et al. (2019) took advantage of the larger sample sizes
that can be obtained through virtual labs to scale up this approach, collecting
human decisions for over 10,000 pairs of gambles. The resulting data set can be
used to evaluate models of decision-making and is at a scale where machine
learning methods can be used to augment the insights of human
researchers (Agrawal, Peterson, and Griffiths 2020).

In some domains, it is possible to identify a set of factors that are all believed to
influence the behavior but where the relative contributions of those factors and
the ways in which they interact remain an open question. This can arise as a
consequence of the hypothesis-driven approach underlying traditional behavioral
research, in which different research groups each have their own hypothesis about
a factor that they believe is relevant to the behavior and construct an experiment
to provide evidence for that hypothesis, but the experiments provide no way to
compare the factors against one another. A massively multi-factor experiment
design collects all of these factors together and then runs a single experiment in
which they are pitted against one another. This approach can also be extended to
include interactions between the factors. The advantage, of course, by running this
as part of one large, single experiment, is the ability to control for the many
unmeasurable differences across studies that are likely to exist.

In other settings, the range of conditions or stimuli is intrinsically constrained,
expressible in terms of just a couple of variables, but the fundamental question is
about the form of the relationship between those variables. For example, the
controversy over the existence of the Dunning-Kruger effect (in which people who
know less about a topic significantly overestimate their knowledge) focuses on one
portion of the curve that relates people's performance to their self-
assessment (Kruger and Dunning 1999). If low-performers really are less
metacognitively aware, as opposed to simply adjusting their estimates of their own
ability in the face of uncertainty in an appropriately Bayesian way (Moore and
Healy 2008), then we should expect to see an asymmetry in the function that
relates performance to self-assessment. However, previous research has not
provided sufficient resolution to capture the form of this curve — the conclusion
that the Dunning-Kruger effect exists was based on the aggregated performance of
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the lowest quartile of participants. With much larger samples, it is possible to
definitively identify the form of these functions in a way that differentiates
between current theories and provides the basis for future theorizing. In the case
of the Dunning-Kruger effect, Jansen and colleagues used an online study with
approximately 4000 participants to estimate the form of the function across the
full range of performance, showing that it displays the predicted
asymmetry (Jansen, Rafferty, and Griffiths 2021).

Another tradition of laboratory experiments is to use highly simplified stimuli (Rust
and Movshon 2005). Such stimuli are useful for testing theories of human behavior
precisely because they eliminate possible confounds. However, simplification also
risks decoupling laboratory results from the naturalistic behaviors that motivated
the research, sacrificing ecological validity. With much larger samples, it is possible
to conduct experiments that produce meaningful results with more naturalistic
stimuli. For example, the psychological literature on categorization has typically
used stimuli that vary on only a handful of dimensions, such as sinusoidal gratings
that vary in angle and spatial frequency or simple geometric shapes. This makes
sense in data-limited settings, where categorization judgments can be collected for
only a small number of stimuli so those stimuli need to vary along only a few
dimensions. However, with the capacity to collect more data comes the potential to
work with more complex stimuli. One recent paper evaluated computational
models of categorization on a data set consisting of 10,000 natural
images (Battleday et al., 2020). In order to do so, it was necessary to run an online
experiment that collected approximately 500,000 human categorization decisions
for those images.

Finally, as noted earlier, experiments in psychology, cognitive science, and
behavioral economics traditionally study behaviors that manifest themselves on
short timescales. For example, one experiment might study how the potential to
establish a reputation increases participants’ propensity to cooperate in a
sequence of social dilemmas, while another might study how participants’ critical
reasoning skills correlate with their susceptibility to misinformation after reading a
handful of real and fake news headlines, and another might measure their stated
intention to save for their retirement after watching an image of their face being
aged artificially. In reality, however, every human comprises a large collection of
traits — intelligence and prosociality and forward thinkingness and social
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perceptiveness and many others — and exhibits behaviors that evolve and
generate outcomes over their life-course. Ideally, therefore, individual-level
experiments should have two properties. First, the same individuals would
participate in many experiments, potentially run by different researchers at
different times, and information from all these experiments should be linked so
that correlations in traits and behaviors can be studied across
contexts (Peysakhovich, Nowak, and Rand 2014). Second, by running individual
experiments over long intervals of time (e.g., months or years) or by running
repeated experiments, the relationship between traits, behavior, and outcomes can
be studied on meaningful timescales. These factors both improve the validity and
generalizability of experimental results as they help make experimental settings
more representative of those outside the lab.

Groups
Moving up the unit of analysis from individuals to groups, new questions emerge
that are not answerable even with a definitive understanding of individual
behavior. For example, questions related to whether — and under what conditions
— groups outperform the best individual as well as what determines collective
performance have motivated innumerable studies in management and
organizational science, social psychology, sociology, complexity science, and
computer science. As with findings about individuals, however, research on groups
has generated inconsistent and even contradictory findings. For instance, while
some studies find that groups dramatically outperform individuals, others find that
“process losses” cause groups to underperform their best members. Moreover,
while some studies have emphasized the importance of individual skill in
determining group performance, others have emphasized factors such as social
perceptiveness and diversity. Faced with these conflicting findings, a hypothetical
manager would have difficulty deciding on when to assign a team to a task —
versus, say, her best individual worker — how to combine individuals with different
attributes, and how her decisions depend on the type and complexity of the task
at hand (Richard Hackman 2011).

To be clear, the problem is not that we lack theoretically informed hypotheses
about the causes and predictors of team performance. Quite to the contrary, the
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aforementioned literatures contain dozens to hundreds of such hypotheses, along
with hundreds to thousands of empirical and modeling results. The problem is that
it is unclear (a) how all these potentially relevant effects jointly predict
performance; and (b) how their relative importance and interactions change over
the “feature space” of tasks. In other words, our collective theoretical knowledge of
what drives group performance suffers from essentially the same problem as our
knowledge of individual-level decision making: isolated tests of individual theories
conducted under different conditions, with different participant pools, and in
different parts of the feature space, tell us little about how our theories fit
together. Therefore, they have little to say about practical applications in which
many theoretically motivated effects may be relevant simultaneously.

Similar remarks could be made for related classes of small-group processes, such
as prosocial behavior (Fehr and Fischbacher 2003), political deliberation (Mutz
2006), and collective intelligence (Woolley et al. 2010). In all cases, there are large
theoretical literatures containing many interesting hypotheses about how specific
features or effects might lead to more or less cooperative behavior, more or less
consensus and/or mutual understanding, and more or less intelligent decisions,
among a group of people. In all cases, the corresponding empirical literature, while
extensive, is filled with inconsistent or contradictory findings. And in both cases,
the sum of all relevant knowledge is not well suited to directly answer
straightforward questions of practical interest: “How should I go about increasing
cooperative behavior in my community?” How do I change the culture of my
organization to be more prosocial?” “How can I leverage the power of deliberation
to increase the perceived legitimacy of local government, or to reduce polarization
in society?”

These are all questions about which of many possible “levers” some policymaker
or change agent might “pull” with the intent of improving some outcome of
interest. Critically, however, (a) there are many such levers, (b) their individual
effects may vary in magnitude and direction with other features of the problem
domain and group identity, and (c) when more than one lever is pulled
simultaneously or in sequence, their effects may interact with each other in
important ways.
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A legacy of the traditional lab model is that researchers typically identify one or a
few theoretical factors of interest, and focus their experiment on the influence of
those factors on some outcome behavior. Selectivity in conditions to be considered
is sensible when only small numbers of participants are available. However, when
many more participants are available, there is an opportunity to run many more
conditions, and it is no longer necessary to focus on those that researchers believe
a priori to be the most informative. In principle, researchers can define a set of
dimensions along which the experiment can vary, and then a process can be used
to generate and sample the set of conditions to be used in the experiment (Letham
et al. 2019; Balietti, Klein, and Riedl 2018; McClelland 1997).

Therefore, answering questions of this sort requires a similar approach to that
outlined above for individual behavior — i.e., some combination of procedural
generation, massively multi-factor designs, high resolution, and naturalistic stimuli
— except that in this case, a treatment unit is now a group rather than an
individual.

Networks
The question of how influence, and more generally information, propagates in
networks is pervasive throughout the social sciences and more recently in
computer science. The reason is that directly influencing people to change their
opinions or behavior is hard; thus, if it were possible to directly influence just a
small number of people and then harness naturally occurring processes of social
influence to influence some much larger number of people indirectly, such an
ability would be of immense practical and policy importance (see, e.g., (Watts 2003;
Christakis and Fowler 2009; Frank 2020)).

Overwhelmingly, research on social influence propagation has been theoretical in
nature: some model of contagion is proposed and its behavior is then studied
analytically or with the use of simulations on one or more networks, which may
also be generated by a model or may come from empirical data. This approach has
been extremely fruitful from a theoretical standpoint, generating numerous
insights with respect to conditions under which large-scale propagation can be
expected to occur (Watts 2002); differences in expected propagation for different
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models of contagion (D. Centola and Macy 2007); and strategies for “seeding”
contagion processes so as to maximize expected propagation (Kempe, Kleinberg,
and Tardos 2003). Unfortunately, the practical difficulty of running networked
contagion experiments has meant that empirical tests of these theoretical models
are rare (Kearns et al. 2009; D. Centola 2010; Damon Centola 2011; Mason and Watts
2012; Shore, Bernstein, and Lazer 2015; A. J. Stewart et al. 2019). Moreover, these
experiments involve no more than a few tens of participants; thus, they are
insufficiently large scale to generalize to most applications of interest. As a result,
we have many theoretical models of contagion on networks and few experimental
results that can guide real-world interventions designed to harness (or
alternatively, to suppress) social influence and contagion. Having the ability to run
controlled networked contagion experiments at the scale of thousands or tens of
thousands of participants would revolutionize our understanding of influence
maximization and prediction across many different network structures.

Societies
At its most ambitious, large-scale and high-throughput experimentation offers a
new opportunity to social science: running experiments at the scale of societies.
Previously, researchers who wanted to run experiments involving the interaction of
hundreds of thousands of people only had the opportunity to do so in the context
of field experiments. While this approach to experimentation is valuable for
providing a naturalistic setting, it has a major weakness in that such experiments
are hard or impossible to replicate. Furthermore, statistical analysis of complex
social phenomena can be challenging because a standard field experiment
provides only a single sample.

To address these limitations, social scientists have sometimes used a different
tool: agent-based modeling, in which simulated agents are used as proxies for
human behavior and the consequences of specific manipulations are evaluated in
silico. The recruitment tools and software modules that we envision offer a third
option: running behavioral simulations of the kind that are associated with agent-
based models, but replacing those simulated agents with human
participants (Kazerooni, Wherry, and Bazarova 2018). By constructing virtual labs
that allow experimenters to design complex control structures in which one
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person’s decision influences the decisions of others , it is possible to create
simulated social systems at society scale. Crucially, the dynamics of these social
systems can be replicated simply by recruiting another group of participants,
opening the door to experimentally addressing a set of questions that were
previously beyond the scope of social science, which can dramatically improve the
validity and predictive power of results from experiments of this type. Preliminary
examples of experiments that do exactly this, going so far as to simulate
evolutionary processes in human populations, are already beginning to be
conducted (Morgan, Suchow, and Griffiths 2020b, [a] 2020).
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If the experiments just discussed are already technically possible, why are we not
already running them? Why is it that, with a handful of exceptions, the vast
majority of lab experiments conducted in online environments maintain the
designs we are familiar with from physical labs: simple treatments, applied to just
one or a few individuals, over short timescales? Why is that, with rare exceptions,
the potential for virtual labs to support “high-throughput” style experiments — in
which an entire parameter space can be explored with hundreds or thousands of
individual experiments — remains unrealized? Why is it, in other words, that in
spite of the revolutionary potential of virtual labs — a potential that has been
evident for well over a decade — the main effect of virtual labs has been simply to
produce somewhat more of the same, with all the same problems for replicability,
robustness, and external validity? In this section, we propose four possible
explanations: logistical and administrative challenges to recruiting participants;
inadequately flexible and powerful software infrastructure; insufficient
coordination among researchers; and cultural inertia among the research
community.

Participant recruiting
Although crowdsourcing services have reduced the cost and difficulty of recruiting
participants, the most popular platforms such as Amazon Mechanical Turk were
designed for simple labeling tasks that can be completed independently and with
little effort by individual workers about whom little is known and who vary widely
in quality and persistence on the service. As a result, they are in some respects
poorly suited for behavioral experiments where researchers may care about the
identity of the participants, require them to devote considerable time and effort to
a single task, or to interact and/or coordinate with other participants on the same
task. For example:

• Although crowd workers tend to be more diverse than college students, they are
not representative of the population at large (Berinsky, Huber, and Lenz 2012),
and international coverage is inconsistent (Difallah, Filatova, and Ipeirotis 2018).
Thus, cross-national comparative studies or studies of specific populations
remain challenging to run.
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• Although the major crowdsourcing services screen workers for quality, the main
purpose is to filter out fraudulent and automated accounts. Thus, it continues
to be difficult to identify workers with specific abilities or attributes that may
be required for specific studies.

• Although crowdsourcing services provide some limited information about
workers, linking individual-level data across experiments is not supported, nor
is it clearly permitted by existing terms of use agreements.

• Although crowdsourcing platforms advertise large populations of workers, the
pool of active workers available on any given day is typically much smaller than
the total capacity, especially when restricting to high-quality workers (N.
Stewart et al. 2015). Running large-scale experiments involving, say, tens of
thousands of participants, remains impossible.

• Although researchers have found creative ways to arrange for multiple workers
to be present simultaneously, platforms do not natively support simultaneous
recruitment; thus running synchronous experiments with more than a few
dozen participants remains extremely challenging.

In recent years, services such as Prolific have been introduced that adapt the crowd
work model to accommodate the special needs of behavioral research; for
example, Prolific offers researchers more control over participant sampling and
quality as well as recruiting participants who are intrinsically motivated to
contribute to scientific studies. However, no existing crowd platform yet supports
the scale and throughput of human subjects required for the designs described in
the previous section.

One-off infrastructure
The current state of experimental software relies on separate packages, tools, and
frameworks across a wide variety of disciplines to meet specific design needs. This
is inefficient because it is not only the result of much-repeated work to achieve (at
least in some sense) similar goals, but because it also inhibits the ability to
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replicate and extend existing experiments due to incompatible software and
methodology.

While early online experiments often required extensive up-front customized
software development, a number of virtual lab software packages and
frameworks (e.g., Volunteer Science, nodeGame, Breadboard, Pushkin, Dallinger,
jsPsych, O-Tree, LIONESS, Empirica) have now been developed that reduce the
overhead associated with building and running experiments (Horton, Rand, and
Zeckhauser 2011). As a result, it is now much easier to implement designs in which
dozens of individuals interact synchronously in groups (Mao et al. 2016) or via
networks (Shore, Bernstein, and Lazer 2015; A. J. Stewart et al. 2019; A. Almaatouq,
Noriega-Campero, et al. 2020), potentially comprising a mixture of human and
algorithmic agents (Shirado and Christakis 2017). It is also increasingly
straightforward to implement complex research designs involving, for example,
block-randomization of participants to many treatment conditions (A. Almaatouq,
Yin, and J. 2020).

Existing systems, however, all exhibit trade-offs between generality and ease of
deployment. This is the consequence of aiming to develop tightly integrated “end-
to-end” solutions for some particular class of problems (e.g., psychology
experiments, two-player economic games).

Coordination & collaboration
A third barrier to massively increase the scale, speed, and complexity of
experimentation is the administrative and logistical burden of implementing these
designs.

Administrative Overhead. Supervising experiments, managing subject payment and
welfare, performing real-time data analysis to optimize learning, and adjusting
designs in response are all labor-intensive tasks requiring varying levels of
expertise. In addition, running large-scale collaborative studies requires
coordination of ethics review across institutions, which leads to different data
management protocols and privacy laws, in a way that poses a logistical challenge.
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Mass Collaboration. As with contemporary replication studies (Open Science
Collaboration 2015), major advances will probably require coordination among
many labs, albeit with a different emphasis than replication. But while the “many
labs” collaborations provide encouraging examples (Open Science Collaboration
2015; Salganik et al. 2020; Landy et al. 2020), they remain relatively rare in the social
sciences, which have historically rewarded individual contributions rather than
team efforts. Additionally, researchers may not want to reveal their studies to the
broader internet, for fear of being scooped, which would hinder sharing research
designs and questions across labs (Law et al. 2017).

Cultural inertia
Twentieth-century experimental behavioral and social science evolved under a
particular set of physical and logistical constraints that restricted experiments to
small sample sizes, short timescales, and simple designs (e.g., testing a single
hypothesis at a time). Over time, generations of researchers have internalized
these features to such an extent that they are thought to be inseparable from
sound scientific practice. Even as the original physical and logistical constraints are
being relaxed, enabling radically different designs than in the past, these socially
and culturally reified beliefs continue to shape researchers’ imaginations and
incentives. Thus, even as researchers in psychology and economics are recruiting
ever-larger numbers of participants online, the studies that are run online differ
quantitatively but not qualitatively from those that might be run in the laboratory
— they use the same kind of experimental designs, with relatively small numbers
of conditions, aiming to answer discrete questions that might help to differentiate
between specific theories. As the scale of online experiments increases, a different
approach is required: we don’t want to run the same experiment with 100,000
people that we might have run with 100.
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Although the problems just outlined are distinct, they are also interdependent.
Simply improving the usability or flexibility of experiment management software
may have little marginal impact on scientific progress without the ability to run
experiments in a “high throughput” manner; and that, in turn, may be impossible
without much larger panels than are currently available and resolving the
coordination difficulties inherent in mass collaborations. Solving all of these
problems simultaneously therefore requires a level of coordinated planning and
investment in shared resources that is unusual in the social sciences. In this
section, we sketch out the core components we believe will be needed to
dramatically increase the scale, speed, and robustness of experimental SBE
science.

New research infrastructure
In contrast with the experimental software described earlier, which has attempted
to develop tightly integrated “end-to-end” solutions for some particular class of
problems (e.g., psychology experiments, two-player games), an ecosystem
approach involves an ensemble of functional components that are modular,
interoperable, and reusable. Achieving this would require developing a set of open
standards that defines what this encapsulation (service/component) is, how to
communicate with it, and how to find and use it.

While many of the existing software platforms have instantiated some of these
functional components (although in tightly integrated applications designed to
meet specific experimental needs), some components will need to be substantially
expanded in scope and functionality in order to scale experimental SBE science.

The use of the “ecosystem” as a design principle presents several opportunities for
operational efficiency.

1. An ecosystem will allow, at least in theory1, for the reuse of current software
assets, in turn lowering new development costs, decreasing development time,
reducing risk, and leveraging existing platform investments and strengths.
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2. The individual components of the ecosystem should be loosely coupled to
reduce vendor/provider lock-in and create a flexible infrastructure. As a result,
the individual components of the ecosystem should be modular in the sense
that each can be modified or replaced without needing to modify or replace any
other component because the interface to the component remains the same. An
important advantage of this approach is that the resulting functional
components would be available for end-users (i.e., researchers) to modify or
combine in situational, creative, and novel ways that the developers may not
have envisioned. Indeed it is precisely because no one particular platform, as
they now exist, can be expected to offer optimal functionality for all
experimental designs, that we believe a modular design is necessary.

3. The functional scope of these components should allow for the possibility to
directly define experiment requirements as a collection of components, rather
than translating experiment requirements into lower-level software
development requirements. As a result, the ecosystem should abstract away
many of the logistical concerns of running experiments, analogous to how
cloud computing has abstracted away from the management of technical
resources for many companies.

New Experimental Designs
The ability to conduct procedurally generated, massively multi-factor, high-
resolution, naturalistic designs will change the way that we approach running
behavioral experiments. However, there is still a lot of room to develop other kinds
of experimental designs that are optimized for the high-throughput environment
created by virtual labs. In particular, we can navigate the increasingly large spaces
of possible conditions and stimuli supported by online experiments by making use
of adaptive designs that intelligently determine the next conditions to run.

Adaptive designs leverage large samples by conducting an experiment that is
dynamic rather than static. The traditional behavioral research paradigm, in which
participants would spend a significant portion of an hour answering questions in a
single experimental condition, is an inefficient way of answering questions about
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human behavior. Using experiments that are administered by computer, in which
the responses of one participant can influence the questions that are asked of
another, it is possible to draw upon methods from computer science and statistics
to construct designs that can create a more complete picture of aspects of human
cognition (Suchow and Griffiths 2016).

Some of the most ambitious adaptive designs essentially implement an algorithm
with people. For example, iterated learning designs, in which each participant
learns from data generated by the previous participant (Kalish and Griffiths 2006),
can be viewed as a kind of Markov chain Monte Carlo algorithm implemented with
people. This kind of design can be an effective way of revealing the structure of
human learning biases. Algorithmic designs may be more challenging to develop
collaboratively, but also offer disproportionate benefits in allowing us to make the
most of the large sample sizes provided by our experiments.

More generally, automating the administration of experiments creates
opportunities for automating experiment design. If experiments are run by
specifying a set of parameters and then executing a line of computer code, it would
be possible to write algorithms that automatically decide how to set those
parameters. For example, if the goal is to identify the conditions that give rise to
the biggest change in behavior, we could express that as an objective function and
run an optimization algorithm over the parameters of an experiment, executing
variance of the experiment to determine how people behave. Alternatively, if the
goal is to estimate a theoretical model (or choose between models) it would be
possible to automate the process of identifying the experiment parameters that
are most informative, that iteratively run those experiments to hone in on the
answer to the question at hand.

New approaches to data analysis
The data sets produced by large-scale studies can pose a challenge for the
traditional methods of analysis and modeling used in behavioral research. Many
disciplines that use experiments rely on statistical significance testing as a means
of evaluating hypotheses. However, as data set sizes increase statistical
significance becomes less meaningful — at the significance levels traditionally used
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in most social science research, even the smallest effect will be significant. This
encourages developing a new set of conventions for the analysis of large-scale
data sets, supporting the use of more stringent alpha levels, an emphasis on effect
sizes, multilevel models, and Bayesian methods — all practices that have been
encouraged in recent papers on improving methodology in social science research.

More fundamentally, the style of procedurally generated, massively multi-factor,
high-resolution, naturalistic designs for which we have advocated corresponds to a
very different approach to theory testing than traditional null hypothesis testing.
Returning to our analogy of pulling levers (see Groups), null hypothesis testing
poses and answers questions of the form “Can I reject the null hypothesis that
lever X has no effect on the outcome?” Setting aside that some of these results
may fail to replicate, simply showing that many “levers” have non-zero effects
under some conditions tells us little about the practical question of which levers to
pull and how much we can expect them to affect the outcome. But shifting to an
approach in which many levers are tested simultaneously and all these multi-
factor experiments are then replicated over many different conditions, potentially
in an adaptive manner, will require embracing (or at least accepting) a very
different notion of what is considered a theoretical and empirical contribution (e.g.
a null effect may be of significant interest when done in large scale).

Large-scale data sets also potentially pose a challenge for computational
modeling, in part because as the size of the data set increases so does the
complexity of the model that it supports. A principle of statistics known as the
bias-variance trade-off identifies two ways in which a model can fail to generalize:
it can be too simple, in which case it is unable to capture the trends in the data
and exhibits a bias, or it can be too complex, in which case it overfits the data and
shows a lot of variance across data sets (Geman, Bienenstock, and Doursat 1992).
However, this variance decreases as the data sets increase in size. Consequently,
with large data sets poor generalization is typically due to models being too simple
rather than being too complex.

The implications of the bias-variance trade-off for social science are perhaps
surprising: as we run larger experiments, the simple models that we use to explain
behavior are no longer likely to be adequate. The reason is that the data will likely
show systematic regularities that go beyond the capacity of any previous models to
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explain. As a consequence, we need to develop new kinds of models that are
capable of dealing with the complexity of human behavior while retaining the
interpretability of simpler models. An early example of this approach is Agrawal et
al. (Agrawal, Peterson, and Griffiths 2020), who combine machine learning models
with rational choice models to jointly maximize predictive accuracy and
interpretability in the context of moral judgments.

New kinds of theories
The implications of the bias-variance trade-off run deep. If individuals, groups, and
societies are complex, then as we get more data we are going to reveal more and
more of that complexity. Observations of this sort create a challenge for disciplines
that have tried to reduce human behavior to simple theories. In many ways, the
fact that we have been able to do so in the past is partly a consequence of the fact
that we didn’t have enough data. In parallel with the changes to infrastructure and
methodology required to fulfill the promise of virtual labs, we as scientists need to
adjust our expectations about what theories of human behavior are going to look
like (Watts 2014). We may discover powerful new general laws that characterize
what people do across many different situations — something that is only possible
when you are able to study all of those situations — but we may also discover all of
the complexities and nuances of the ways that people deviate from those general
laws, and have enough data to establish that those deviations are systematic and
meaningful. This type of new theory will let us predict human behavior better than
ever before, and understand the factors that influence it, but at the cost of some of
the simplicity that our limited data have led us to believe in.
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Returning to our opening motivation, while experimental social, behavioral, and
economic science has clearly benefited from the digital revolution, it has
developed more slowly and accomplished less than it could have. In this report we
have reviewed some of the exciting progress made to date but also argued that
truly transformative progress will require more than just business as usual.
Specifically, we have outlined a series of development opportunities that we
believe will, in combination, substantially improve the robustness, replicability,
and ultimately usefulness of lab-style experiments applied to problems of human
behavior, economics, and society. Although ambitious, the technical and financial
investments required to respond to these opportunities are modest in comparison
to the potential scientific impact they can have. By developing a new mentality of
virtual lab infrastructure, a flood of new designs and novel experiments can
become available, helping to resolve many of the challenges experimental social,
behavioral and economic scientists have faced so far.
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